Новый виток эволюции двс супер двигатель без коленвала

Интернет-магазин Легион - Автодата

Недымящий двигатель Кушуля

На этом двигателе были получены замечательные результаты. Установленный на автомобиле «Волга», он за короткое время прошел 30 тыс. км. И показал хорошие пусковые и эксплуатационные качества, высокую надежность в работе. Автомобиль, на котором стоял опытный двигатель, имел отличные динамические и ходовые качества, совершенно бездымный выхлоп и расходовал на 25 % меньше топлива, чем серийный. На стендовых же испытаниях двигателя В.М. Кушуля было достигнуто снижение расхода топлива на 30% по сравнению с обычными двигателями. В карбюраторном четырехтактном варианте двигатель работает так.

Недостатки

Хорошая благожелательная статья, в ней автор отдает дань той огромной работе, которую удалось пронести на своих плечах через всю свою жизнь В.М.Кушулю.

Информацию собрал и отредактировал Vdovin/

Роторно-волновой двигатель

Одну из оригинальных конструкций двигателя внутреннего сгорания предложили наши соотечественники. Конструкция эта достаточно необычна и называется — роторно-волновой двигатель.

Роторно-волновой двигатель

На сегодняшнем этапе развития техники эта задача может быть решена только с переходом к качественно новым конструктивным принципам и решениям. Таким условиям полностью отвечает концептуальная идея «Роторно-волнового двигателя» (пат. России № 2155272) — объемной прямоточной машины, воспроизводящей последовательность работы газотурбинного двигателя. В нем совершенно устранено возвратно-поступательное движение рабочих органов, ротор полностью уравновешен и вращается с постоянной угловой скоростью. Рабочее тело, как и в турбине, движется вдоль оси двигателя, траектория движения — винтовая линия. В конструкции отсутствует вредное пространство, ограничивающее рост степени сжатия рабочего тела. Из-за отсутствия уплотнительных элементов и, соответственно трения в проточной части, снимаются ограничения по ресурсу и числам оборотов двигателя. Рабочий процесс допускает, произвольно изменять степень сжатия и расширения рабочего тела; без дополнительных регулировок и остановки двигателя осуществлять переход на любой сорт топлива.

Оригинальная кинематическая схема и прогрессивный рабочий процесс роторного двигателя позволяет собрать в одной конструкции только положительные стороны всех типов ДВС. В основе же кинематики роторно-волнового двигателя (РВД) лежит сферический механизм, где оси его основных деталей пересекаются в одном месте — центре воображаемой сферы.

Установленный с минимальным зазором конический винтовой ротор совмещает вращение с противоположным ему планетарным обкатыванием по внутренним огибающим корпуса. Накладывая два эти вида движения на любые сечения ротора (кроме центра — точки его перегиба), можно увидеть, что они совершают в определенной последовательности равные угловые колебания в пазах корпуса, образуя волны, которые последовательно перекатываются по ходу винтовых поверхностей корпуса.

Аналогичный процесс можно видеть на море, наблюдая в ветреную погоду за перемещением волн в «стоячей воде».

В компрессорном отсеке формирование и движение волн начинается от периферии по направлению к центру, а в расширительном отсеке — наоборот — от центра к периферии.

Рис. 1


1- Ротор; 2- Корпус; 3- Вал отбора мощности; 4- Шарнир равных угловых скоростей; 5- Эксцентрик; 6- Блок шестерен. А- впускное окно, Б- выпускное окно, В- компрессорный отсек, Г- камера сгорания, Д- расширительный отсек, φ- угол наклона ротора.

Ротор (1) и вал отбора мощности (3) соединяются между собой в центре двигателя шарниром Гука (4), который можно назвать шарниром равных угловых скоростей (ШРУСом). Необходимое же ротору «дополнительное» обкатывание по внутренним огибающим корпуса задается вспомогательным устройством — так называемым «генератором волн». Его основной элемент — вращающийся на основном валу эксцентрик (5), с приводом через блок шестерен (6) все от того же вала. Эксцентрик наклоняя ротор от 3 до 6 градусов обеспечивает угловое качание сечениям ротора в пределах от 12 до 24 градусов (подробнее см. в отраслевом журнале «Двигателестроение» 2 и 3 № за 2001 г.). В такой комплектации расчетный механический КПД двигателя составит невиданную цифру — 97 %.

Рис. 2


Пятигипотрохоидный РВД с внешними огибающими и с отбором мощности через шарнир равных угловых скоростей (ШРУС). Обладает свойствами редуктора — четырем обкатываниям ротора, с засасыванием в двигатель 20 объемов воздуха, соответствует один оборот выходного вала. Заменяет собой 80-ти цилиндровый поршневой ДВС.

Рис. 3


Трехгипотрохоидный РВД с внешними огибающими и с отбором мощности через вал с косой шейкой. Выходной вал и ротор вращаются в разные стороны в пропорции 1:0,5 Заменяет собой 12-ти цилиндровый поршневой ДВС.

Описанный рабочий процесс соответствует самой простой конструкции, в которой двухзаходный корпус работает в паре с однозаходным ротором. Рост же числа заходов неизбежно приводит к усложнению формы корпуса и ротора, которые между собой будут соотноситься как целые порядковые числа: 21; 32; 43; 54 и т. д. Поперечные сечения тел ротора и корпуса во всех случаях будут иметь гипотрохоидные формы с внешними огибающими: например, как это показано на Рис. 2 и 3. На рис. 3 изображен один из альтернативных вариантов отбора мощности от ротора — валом с косой шейкой.

Рассмотренный тип двигателя, в основе которого лежит внутреннее винтовое зацепление ротора с корпусом, образует новое семейство прямоточных коловратных машин: в нем, с увеличением количества заходов ротора и корпуса, угловая скорость ротора и соответственно вала отбора мощности оборудованного ШРУСом будет падать, с одновременным ростом величины крутящего момента. Эта замечательная особенность кинематической схемы РВД позволит многозаходному ротору по совместительству выполнять еще и функцию понижающего редуктора. Ведь не секрет, что рост мощности двигателя всегда идет по пути увеличения рабочих оборотов (ему больше некуда идти), а потребители энергии, будь то винт судна, или автомобильное колесо, остаются практически неизменными. Приходится ставить дополнительные редукторы для снижения оборотов. А здесь, двигатель сам себе и редуктор.

Функция редуктора в многозаходных конструкциях (Рис.2) возложена на механизм синхронизации, состоящий из неподвижного венца с внутренним зацеплением (1) и меньшей по диаметру планетарной шестерни с внешним зацеплением (2) жестко соединенной с ротором. Количество зубьев венца к шестерне всегда должно соответствовать выбранной пропорции корпуса к ротору. Иначе нельзя, только этим достигается синхронизация и требуемое трохоидное движение ротора. Каждому новому обкатыванию шестерни ротора будет соответствовать ее поворот на фиксированный вместе с ротором угол. Для двухзаходного ротора, работающего в паре с трехзаходным корпусом, на одно обкатывание шестерни приходится поворот ротора в корпусе на 50 %, в трехзаходном варианте ротора — на 33 %, в четырехзаходном — на 25 % и т.д.

Если изначально однозаходный ротор, работающий в паре с двухзаходным корпусом эквивалентен восьмицилиндровому поршневому ДВС, то уже двухзаходный ротор в паре с трехзаходным корпусом эквивалентны 24-х цилиндровому ДВС. Дальше — больше. Трехзаходный ротор соответствует 48 цилиндровому поршневому ДВС, четырехзаходный — 80 цилиндровому ДВС и т.д.

Для последнего примера, у которого будет несколько меньший механический КПД (94 -95 %), расчетный крутящий момент на выходном валу увеличится от 16 до 21 раза в сравнении с поршневым аналогам, и это при равных с ним оборотах и литраже двигателя. Что само по себе, например, для автомобильного варианта уже не требует установки за двигателем коробки передач, которая повышает крутящий момент двигателя всего в 4 — 10 раз.

Здесь ротор, производя полный оборот, вынужден при этом совершать четыре полных обкатывания по внутренним огибающим корпуса . Соответственно, при 2500 об/мин ротора, каждый из пяти винтовых каналов корпуса должен всосать по 10000 объемов воздуха, что в сумме составит 50000 объемов в минуту. Для сравнения, у аналогичного одноцилиндрового четырехтактного ДВС при равных оборотах, количество тактов всасывания наполнит 625 рабочих объемов двигателя (каждый четвертый такт — всасывание). Вот откуда она, восьмидесятикратная разница. Учитывая низкий коэффициент наполнения безнаддувного поршневого двигателя, равный 85% против 100-105% в РВД, фактическая разница увеличится до 94. Мы не учли еще разницу в механическом КПД поршневого ДВС и РВД соответственно 85% против 94%. Соотнесем ее на протечки рабочего тела через «неплотности» ротора.

[3]

Осталось упомянуть и о предельно допустимых оборотах РВД, сравнив их с серийными двигателями. Современный поршневой ДВС применяет 4500 — 6000 об/мин; аналогичная по мощности газовая турбина свободно раскручивается до 50000 — 70000 об/мин; РВД должен занять промежуточное положение — его удел от 2500 до 30000 об/мин (все зависит от количества заходов ротора).

В рабочих отсеках РВД одновременно может сжиматься и расширяться от нескольких единиц до несколько десятков объемов воздуха. А то место, где ротор, едва не касаясь своей поверхностью, приближается на минимальное расстояние к корпусу, как раз и является подвижной разделительной линией между последовательно движущимися камерами (на Рис.1 сечения 1-1 и 1Х-1Х). За каждый оборот ротора степень сжатия (расширения) изменяется в 4-5 раз. Теоретическая же степень сжатия (расширения) в одном агрегате может достигать ста единиц (все зависит от количества витков), и это при полном отказе от уплотнительных элементов, роль которых выполняет тело ротора.

Ротор, освобождаясь от механического трения «завинчивает» порции воздуха в камеру сгорания нигде не касаясь стенок корпуса, поэтому так же отпадает необходимость в смазке рабочих отсеков двигателя. Трение остается лишь в подшипниках качения, на которые опирается ротор за пределами горячих зон и в ШРУСе. Последний же конструктивно очень просто позволяет передавать весь поток мощности от ротора выходному валу фактически без потерь. Достаточно вспомнить, что механический КПД широко используемых в технике ШРУСов очень высок и колеблется при малых углах качания от 99 до 99,5 %. Кроме этого, шарнирное соединение автоматически точно центрирует ротор в любом его положении, а сам шарнир, расположенный в центре двигателя, надежно защищен от теплового воздействия камеры сгорания необходимой толщиной сферического теплового экрана.

Смотрите также

Как видим, в РВД ничто не препятствует применению очень высоких оборотов: ротор вращается с постоянной угловой скоростью, он прекрасно уравновешивается, вместо клапанов, или даже окон, в конструкции используются каналы неограниченной пропускной способности для непрерывного поступления воздуха в рабочие отсеки двигателя. Отсутствие трения также снимает ограничения по износу деталей и ресурсу двигателя в целом. В двигателе будут изнашиваться только подшипники, а для них ресурс в 30 — 40 тыс. рабочих часов не предел. Заметим кстати, что хороший автомобильный двигатель в наше время имеет моторесурс 5000- 7000 часов до первого ремонта. Автомобильные РВД, при неограниченной мощности окажутся долговечнее, чем рама автомобиля (самое долговечное, что есть в нем).

Рабочий процесс для камеры постоянного горения, позволяет, не останавливая двигатель, подавать в него любой вид жидкого, газообразного или даже твердого распыленного топлива, полностью стирая грани между турбинами, дизельными и карбюраторными двигателями. В кинематических звеньях механизмов поршневых и роторных ДВС присутствуют так называемые «мертвые точки», для их преодоления за двигателем устанавливается значительный по массе маховик. В РВД же — газовые силы, действующие на ротор, направлены всегда по касательной к его поверхности, они постоянны и непрерывны, что делает совершенно ненужной установку маховика, а в некоторых случаях и противовесов, применяемых для полного уравновешивания двигателя.

Компоновочная схема компрессорного и расширительного отсеков РВД такова, что допускает также, без остановки двигателя, в широких пределах изменять степень сжатия и расширения рабочего тела, в том числе до полного расширения отработанных газов, при котором отпадает необходимость в глушителе шума. Исчезает не только значительное сопротивление, которое создает глушитель, отнимая у двигателя до 10 % его мощности, но и в процессе продолженного расширения выделится еще 10 -15 % дополнительной энергии.

Разумеется, прирост мощности в 20-25% очень привлекательны и для разработчиков серийных ДВС. На практике же продолженное расширение не удается применять из-за нецелесообразного увеличения весогабаритных показателей силовых установок с одновременным ростом в них величины механических потерь. Ну и, наконец, главный резерв повышения КПД — применение в конструкции РВД керамических материалов — жаропрочных теплоизолированных покрытий, позволяющих отказаться от системы охлаждения и заменить собой сложнейшие турбокомпаундные двигатели. С использованием только таких свойств керамики для РВД, которыми она всегда обладала — способностью работать на сжатие, умеренное растяжение при стабильной температуре и давлении во всех сечениях корпуса и ротора.

В заключение приведем еще несколько цифр. Расчетный индикаторный КПД простого цикла РВД в адиабатном исполнении и весьма умеренной степени сжатия равной 15 со степенью расширения 36 составит 51 %. Соответственно расход топлива в этом случае может составить 171 г/кВт, при удельном весе силовой установки 0,15 — 0,25 кг/кВт. Для сравнения — в дизельном двигателе, использующим такую степень сжатия, расход топлива составляет 224 г/кВт при удельном весе 3,5 — 15 кг/кВт. За счет дальнейшего увеличения степени сжатия в РВД и использования в нем системы регенерации отработанных газов (для возврата теряемой с отработанными газами теплоты), индикаторный КПД теплового цикла можно еще значительно увеличить.

Там, где требуется получить максимальный расход воздуха и огромные мощности, например, для авиации и судовых установок — выгоднее использовать многозаходные кинематические схемы, ограниченные по росту степени сжатия. Если главным фактором выступает экономичность, перспективней использовать двух — трехзаходные схемы роторов, как наиболее простые и допускающие наибольшую степень сжатия и расширения рабочего тела.

Необходимо признать, что на данный момент времени сильно отстает технологическая база предприятий, которые можно привлекать для изготовления подобного класса машин, но вместе с тем интенсивное развитие компьютерного проектирования способно решить многие технические вопросы, открывая тем самым благоприятные условия для создания высокоэкономичных и экологически безопасных энергетических установок. И в качестве примера можно привести одну из анимаций студента Новосибирского Государственного Технического университета, кафедры автоматизации производственных процессов в машиностроении, Хайрулина Р.Р. с дипломного проекта: «Автоматизация проектирования роторно-волнового двигателя».

Техника › Зачем инженеры возвращают встречные поршни

За последнее десятилетие изобретатели в разных странах выдали кучу самых экзотических схем ДВС, некоторые даже удалось воплотить в металле. Но массовая индустрия продолжает выпускать моторы классического вида. Проблема в конструкторских просчётах новичков или в отсутствии у них финансирования?

Недавнее известие о том, что миллиардер Билл Гейтс и инвестиционная фирма Khosla Ventures решили вложить миллионы в компанию EcoMotors, проектирующую двигатели со встречным движением поршней, заставило нас детально рассмотреть заокеанскую разработку. У подобных моторов давняя история, но широкого распространения они не получили, во всяком случае на автомобильном транспорте. EcoMotors придала, казалось бы, известному блюду новый вкус.

Свой двигатель с двумя оппозитными цилиндрами, в каждом из которых работает по два встречных поршня, EcoMotors назвала незамысловато — OPOC, что значит Opposed Piston Opposed Cylinder — «оппозитные поршни, оппозитные цилиндры». В принципе, по такой схеме может работать как бензиновый мотор (или ДВС, потребляющий спирт), так и дизельный, но пока компания сосредоточила усилия на втором варианте.

Первый двигатель типа OPOC — дизельную модель EM100 (число означает диаметр цилиндров в миллиметрах) американская компания впервые показала общественности весной 2010 года. По информации EcoMotors, весит агрегат 134 кг, размеры его составляют 58 (длина) х 105 (ширина) х 47 (высота) см, развивает он мощность 325 лошадиных сил и выдаёт крутящий момент 900 Н•м.

Двигатель OPOC — двухтактный, так что за один оборот коленчатого вала встречные поршни каждого из цилиндров совершают рабочий ход. При движении к своим мёртвым точкам они открывают окна в стенках цилиндров. Причём один из поршней заведует впуском, второй — выпуском. На рисунке ниже их легко распознать по цветам — синему и красному соответственно. При этом окна расположены так, что выпускное открывается чуть раньше впускного и закрывается также раньше. Это важно для хорошего газообмена.

Ключевые компоненты OPOC, вид сверху и спереди. Обратите внимание на несимметричное расположение впускных и выпускных патрубков относительно коленвала.

Устранение головок цилиндров, клапанов и механизма их привода упростило мотор, сделало его легче, снизило потери на трение и даже расход масла (по оценке компании, вдвое против обычного дизеля). Но ведь такими преимуществами вроде бы могут похвастать и другие двухтактные моторы со встречными поршнями?

Изюминка новинки в том, что все поршни в ней соединены с единственным центральным коленвалом, в то время как раньше схожие конструкции требовали двух коленчатых валов по краям движка. Соответственно, они были заметно крупнее и тяжелее, и неудивительно, что применение нашли в основном на тепловозах и судах. Ну а OPOC, схема работы которого представлена в ролике ниже, нацелен на куда более широкий спектр машин.

Как любой двухтактник, OPOC нуждается во внешнем устройстве, которое продувало бы цилиндры в момент открытия окон. В рассматриваемом случае конструкторы решили возложить эту обязанность на турбонаддув. Но очевидно, он не поможет при запуске мотора, а сами цилиндры «вдохнуть» и «выдохнуть» не способны.

Решение опять же нашлось в давней идее, которую ряд компаний обкатывал, но до ума никто так и не довёл. На вал классической турбинки инженеры поставили электродвигатель. При запуске и до тех пор, пока ДВС не набрал обороты, этот моторчик получает энергию от батарей, обеспечивая «дыхание» OPOC. А далее мотор отключается, и турбонаддув превращается в самый обычный. Более того, на высоких оборотах, когда поток выхлопных газов велик, электромотор в турбине может превращаться в генератор, подпитывающий батареи машины.

[1]

Электрический турбонаддув — один из самых спорных элементов новинки. Для его раскрутки нужно приличное количество энергии, что приводит к необходимости ёмких и мощных батарей, а значит, удорожает конструкцию.

Новая схема, по утверждению её создателей, отличается очень хорошей продувкой цилиндров, а потому позволяет извлечь наибольшую выгоду из самого двухтактного цикла, теоретически позволяющего достичь вдвое большей литровой мощности двигателя, по сравнению с четырёхтактным. Хотя на практике такого показателя ещё не достигалось. Система OPOC обладает рядом иных любопытных особенностей.

При новой конфигурации для того, чтобы обеспечить заданный рабочий объём, каждому из поршней за один ход требуется пройти вдвое меньшее расстояние. Это означает и меньшую скорость движения при фиксированных оборотах, следовательно, и меньшие потери на трение. Всеми этими особенностями двигатель OPOC обязан в первую очередь Петеру Хофбауэру. Основатель, председатель и технический директор EcoMotors ранее много лет возглавлял разработку перспективных двигателей в компании Volkswagen. К примеру, на его счету смещённо-рядный мотор VR6 с малым (15 градусов) углом развала цилиндров. И хотя фирма EcoMotors была основана в 2008 году, сам Хофбауэр начал размышлять над OPOC на несколько лет раньше.

Идея Петера Хофбауэра хотя сама по себе и свежа, но корнями уходит в годы. Отправной точкой его изысканиям послужили созданный Гуго Юнкерсом авиационный дизель со встречными поршнями Junkers JUMO 205 (вверху) и бензиновые «оппозитники» Фердинанда Порше (внизу), в числе которых мотор автомобиля, получившего после войны всемирную известность под именем «Жук». Фактически Хофбауэр скрестил эти две конструкции.

Компания сообщает, что OPOC в дизельном варианте на легче, чем обычный турбодизель той же мощности, содержит на 50% меньше деталей, занимает в два-четыре раза меньше места под капотом и при этом может быть (при определённых условиях) на экономичнее. Последняя цифра вызывает у специалистов самые большие сомнения, однако, даже если выигрыш в расходе преувеличен, основания для оптимистичных заявлений у EcoMotors имеются. Первый образец ДВС OPOC, по утверждению фирмы, провёл на динамометрическом стенде свыше 500 часов. Можно констатировать, что схема работает. С характеристиками дело обстоит не так однозначно. Модель EM100, которую ныне испытывают инженеры, выдаёт заявленные параметры по мощности и крутящему моменту только при настройках, не учитывающих токсичность выхлопа. Такую версию OPOC компания предлагает ставить на военную технику, для которой отношение отдачи к весу важнее прочего.

Для обычного транспорта EcoMotors предлагает настраивать те же движки несколько иначе: на 300 л.с. и 746 Н•м. Улучшение экономичности против обычных дизелей в таком случае обещано «всего» но и оно выглядит огромным шагом вперёд, так как обычно компании борются за каждый процент. Дальнейшая экономия возможна при объединении пары таких моторов в четырёхцилиндровый агрегат. То, что раньше было самостоятельным мотором, превращается в модуль. Между ними EcoMotors намерена ставить управляемую электроникой муфту. При малой нагрузке, мол, будет работать только один модуль, при большой — подключится второй. А так как OPOC хорошо уравновешен, все действующие силы тут компенсируют друг друга и мотор отличается минимумом вибраций, то и активация «спящей» половинки в любой момент пройдёт гладко.

Замысел этот похож на известное отключение цилиндров в больших двигателях. Вот только там «холостые» поршни всё равно продолжают движение вверх-вниз, здесь же половина мотора останавливается полностью, а вторая продолжает трудиться в выгодном режиме. Кроме того, в такой бинарной схеме инженеры предлагают ещё немного снизить предельную отдачу каждого модуля — до 240 «лошадок» (480 будет развивать весь агрегат). По соотношению мощности и веса это всё ещё будет очень достойный мотор, причём, мол, удастся добиться максимальной экономии горючего (тех самых 45%) и соответствия самым строгим нормам по токсичности выхлопа, уверяют разработчики.

Пока OPOC — система сырая, а её конструкторы больше раздают обещания. Но они оптимисты и приступили к расширению линейки. На чертежах уже вырисовывается двухцилиндровый мотор EM65 чуть меньшего размера и массы, чем EM100. Его, кстати, хотят перевести на бензин. Сферы же применения EM65 вполне очевидны: лёгкие грузовики и легковушки, в том числе гибриды. Определённым залогом, но не стопроцентной гарантией успеха экзотического ДВС является репутация его главного конструктора: Петер отдал Фольксвагену 20 лет жизни. И удивительно ли, к слову, что его нынешняя работа перекликается с проектами Порше, стоявшего у истоков знаменитой немецкой марки?

Двигатель не заводится после мойки: что делать водителю

Видео (кликните для воспроизведения).

Среди автолюбителей есть большое число владельцев, которые стремятся поддерживать максимальную чистоту не только салона и кузова автомобиля, но и подкапотного пространства. Другими словами, речь идет о мойке двигателя. Как известно, двигатель можно помыть разными способами, однако при этом достаточно часто возникает ситуация, когда свежевымытый силовой агрегат не заводится.

Зачастую стартер крутит, двигатель даже пытается начать работу (схватывает), но запуска не происходит. Также на многих авто агрегат удается запустить, при этом машина троит после мойки двигателя и затем глохнет. В этой статье мы рассмотрим основные причины, по которым ДВС отказывается заводиться, после мойки двигателя горит «чек», силовая установка работает с перебоями и т.п.

Владелец помыл двигатель и машина не заводится: возможные причины неисправности

Итак, необходимо сразу отметить, что силовой агрегат обычно не заводится в том случае, если его мойка выполнялась с учетом серьезных нарушений.

Другими словами, было допущено отклонение или полное игнорирование определенных правил в процессе выполнения данной процедуры.

При этом абсолютно не важно, мыли ли двигатель вручную, Керхером или же производилась мойка двигателя паром. Ясно одно – вода или влага попала в ответственные элементы различных систем, что привело к сбоям или замыканию. Однако не стоит сразу отчаиваться и тянуть машину в сервис. Необходимо отметить, что многие последствия такой мойки можно устранить самостоятельно прямо на месте.

  • Прежде всего, нужно внимательно осмотреть подкапотное пространство на предмет возможного скопления воды в различных нишах и углублениях. Особое внимание необходимо обращать на отдаленные и труднодоступные места.
  • Для того чтобы убрать воду, наилучшим образом подходить ветошь и губка. Губка оптимально подходит для труднодоступных участков, так как, в отличие от тряпок, способна впитать большое количество воды.

Рекомендуем также прочитать статью о том, как правильно мыть двигатель зимой. Из этой статьи вы узнаете об особенностях мойки мотора и подкапотного пространства в зимний период, то есть с учетом отрицательных температур наружного воздуха и возможных последствий.

  • Следующим шагом будет удаление влаги с клемм аккумулятора, высоковольтных бронепроводов свечей зажигания, а также других элементов проводки под капотом. Например, высокая влажность приводит к тому, что на клеммах АКБ образуется характерный налет серого цвета. Такой налет значительно ухудшает контакт между клеммами и батареей. В результате двигатель сложно завести.
  • После того, как все участки будут просушены, можно попытаться завести машину. Если причиной проблемы была влага, тогда после ее удаления агрегат должен запуститься и начать работать ровно.

В случаях, когда поверхностное удаление воды не помогает, нужно подойти к вопросу сушки с другой стороны. Одним из самых проблемных участков можно считать место установки свечей зажигания. Если там стоит вода или залиты свечи, тогда агрегат не заведется, так как не будет искры для воспламенения горючего в цилиндрах. В такой ситуации свечи зажигания нужно выкрутить и отдельно просушить.

Параллельно необходимо сушить и свечные колодцы. Также нужно осмотреть высоковольтные свечные провода и места их соединений со свечами. Как правило, чтобы не допустить короткого замыкания, нужно осматривать всю проводку под капотом.

Что касается автомашин с трамблером, мотор не заведется, если влага скопилась под крышкой трамблера. В этом случае трамблер нужно раскрутить, вытереть все насухо, после чего повторно собрать элемент.

Добавим, что если есть такая возможность, после удаления воды и влаги рекомендуется дополнительно продуть проблемные участки воздухом из компрессора. После завершения всех процедур нужно еще раз проверить надежность всех соединений, затянуть клеммы на АКБ и пробовать заводить автомобиль.

Кстати, автомобиль может иметь систему зажигания без трамблера. В такой конструкции на каждый цилиндр предусмотрены отдельные катушки зажигания. Указанные катушки нужно снимать, протирать и продувать. На одних моторах выполнить это проще, чем разбирать трамблер, однако на других снятие катушек может быть сопряжено с определенными трудностями по причине доступа.

Советы и рекомендации

Как видно, если после мойки двигателя машина не заводится, причин может быть достаточно много, начиная от самых очевидных и заканчивая поломкой, которую на месте определить достаточно сложно.

На разных авто возможно попадание воды внутрь деталей, что приводит к их выходу из строя после замыкания. В этом случае сушить двигатель и подкапотное пространство бесполезно, так как для запуска ДВС поврежденные элементы требуют замены или ремонта.

Во время первичной диагностики нужно учитывать, что от попадания воды чаще всего страдает система зажигания. По этой причине первичный осмотр нужно начинать с элементов указанной системы. Если водитель замечал, что машина и раньше плохо заводилась в сырую погоду или после мойки кузова, тогда это может говорить о том, что где-то имеется пробой изоляции бронепроводов, трещина в крышке трамблера и т.п.

Обратите внимание, если двигатель мыли, тогда проверить подкапотное пространство на предмет скопления влаги необходимо еще до того, как производится первый запуск ДВС. Другими словами, лучше просушить двигатель сразу после мойки, до запуска агрегата. Это позволит избежать таких проблем, как сгоревшие катушки зажигания, короткие замыкания и т.п.

Рекомендуем также прочитать статью о том, чем можно помыть двигатель в домашних условиях. Из этой статьи вы узнаете о доступных способах мойки мотора, как специальной химией, так и подручными бытовыми средствами.

Еще отметим, что если виновником трудного пуска является серый налет на клеммах АКБ, тогда после отсоединения клемм от батареи указанный налет хорошо растворяется и убирается обычной водой. Достаточно налить воды на клемму и затем просушить, вместо того, чтобы долго счищать налет щетками или наждачкой.

Новый тип ДВС — это вам не фенечка

06/10/2010 в Ликбез

5 018 53

У двигателя Ван Бларигана практически нет паразитных потерь, поскольку нет инерции вращающихся масс (по причине отсутствия этих самых масс), на поршень не действуют боковые силы, которые прижимают его к стенкам цилиндра. Нет подшипников коленвала, шатунов, поршневых пальцев, распредвала, клапанов. Более того: на каждый цикл работы двигателя приходится два рабочих такта!

[2]

Будущее — за электротрансмиссиями

Между тем, отрицать пользу от введения евронорм глупо – во многом благодаря им автомобили стали действительно ощутимо чище и экономичнее. Дальнейшее ужесточение норм выхлопа не оставляет автопроизводителю выбора: автомобили неизбежно станут электрическими в самом ближайшем будущем. А вернее, с электрической трансмиссией (Почему в обозримом будущем невозможно нашествие электромобилей без ДВС – тема отдельная). Преимуществ у такой трансмиссии много. Взять хотя бы характеристики электромотора, идеальные для автомобиля. Он, к примеру, может выдавать максимальную мощность на любых оборотах. Как следствие, чем ниже обороты, тем больше крутящий момент. А максимума он достигает при оборотах равных нулю. Именно поэтому тепловозы могут сдвинуть с места состав массой многие тысячи тонн. Электромотор не надо запускать и заставлять его работать на холостом ходу – он всегда готов к работе. Становятся не нужны такие сложные и дорогостоящие агрегаты, как коробка передач или вариатор. И так далее.

Самый же значительный козырь – рекуперация, то есть способность запасать энергию торможения в аккумуляторе, что в условиях городского движения сильно экономит топливо.

Схема работы гибрида с электротрансмиссией проста: автомобиль всегда едет только на электротяге, а при разрядке аккумулятора запускает ДВС для пополнения заряда. К сожалению, массовый выпуск автомобилей с такой схемой сдерживается двумя факторами: во первых, промышленность не готова массово перейти к новой трансмиссии, а во вторых, пока еще нет недорогих аккумуляторов большой емкости. Однако перспективы вырисовываются радужные. Весьма скоро, с освоением технологий, электротрансмиссия станет дешевле автоматической коробки хотя бы в силу того, что она проще в изготовлении.

Мало того: с элетротрансмиссией сильно упростится ДВС. Поскольку он нужен только для зарядки аккумулятора, при пуске он должен сразу выходить на режим максимальной мощности либо – для экономии топлива – максимального момента. Это значит, что нет надобности организовывать его работу на переходных режимах, ту самую, которая и есть головная боль конструкторов, ради которой строят многоклапанные двигатели, впускные коллекторы переменной длины, управление фазами газораспределения, двойной наддув и прочее. Двигатель, работающий в узком диапазоне оборотов намного проще и, значит, дешевле. Можно вообще обойтись без клапанов, распредвалов, и даже без шатунов и коленвала!

Свободный поршень

Это называется «двигатель со свободным поршнем» (FPE). Его особенность в том, что движение поршня определяется не механической связью, а соотношением нагрузки к силе расширяющихся газов. Устроен он просто. По сути, это труба с глухими концами, внутри которой скользит поршень. На каждом конце трубы – форсунка, свеча, впускное и выпускное окно. Движущаяся деталь всего одна. Поршень в таком моторе движется линейно, возвратно-поступательно, между двумя камерами сгорания, как шарик пинг-понга.

КПД такого мотора теоретически больше 70%. Он легок и прост в производстве, а, значит, дешев. Но не смотря на то, что этот двигатель известен без малого почти сто лет, распространения он не получил. Причин тому несколько, и самая главная из них состоит в том, что до последнего времени было совершенно неясно, как снять мощность с поршня, летающего взад-вперед внутри трубы 20000 раз в минуту.

Решение нашел профессор Питер Ван Блариган. Он просто встроил в поршень мощные магниты из неодимового сплава, а на цилиндре поместил медную обмотку. Он построил даже опытный образец, двухтактный линейный генератор под названием FPLA, мощностью 40 кВт. Термический КПД генератора, работающего на пропане, 56%! Любопытно, что этот двигатель может работать не только на пропане, но и на бензине, водороде, солярке, спирте и т.д.

Но в каждой бочке меда встречается своя ложка дегтя. В случае с FPLA ею стала проблема управления поршнем. Дело в том, что в обычном ДВС верхняя мертвая точка траектории поршня задается геометрией кривошипно-шатунного механизма, а в линейном она зависит от степени сжатия и скорости сгорания топливовоздушной смеси. Иными словами, поршень тормозит, создавая давление в камере. Получается, что длительность тактов и верхняя мертвая точка могут меняться. А это значит, что при неточной работе форсунки поршень либо остановится, либо ударится в стенку.

Для такого двигателя нужна быстродействующая система управления. Это сложно, но выполнимо. В конце концов, процессоры сейчас весьма мощные и дешевые, а поршень можно тормозить магнитными катушками цилиндра, ведь внутри него мощные магниты. Не исключено, что полноценный прототип генератора с готовой системой управления будет готов к концу этого года. КПД обещан грандиозный — 50%.

Объяснить причины столь высокого КПД просто. У двигателя Ван Бларигана практически нет паразитных потерь, поскольку нет инерции вращающихся масс (по причине отсутствия этих самых масс), на поршень не действуют боковые силы, которые прижимают его к стенкам цилиндра. Нет подшипников коленвала, шатунов, поршневых пальцев, распредвала, клапанов. Более того: на каждый цикл работы двигателя приходится два рабочих такта!

Разумеется, на моторе FPLA свет клином не сошелся, есть и другие интересные проекты. Факт в том, что автомобилестроение стоит на пороге революционных изменений: грядет упрощение ДВС и электрические трансмиссии. Что на самом деле можно назвать инновацией. В отличие от всевозможных бирюлек и фенечек, которые автопроизводители так любят нам с вами впаривать. Давайте будем отличать цветные стекляшки от бриллиантов.

Супер Двигатель Без Коленвала Super Engine Without Crankshaft. Вася Васильев 06:47 HD

07.03.2014 01:38 2014-03-06T21:38:11.000Z

Супер двигатель без коленвала Super Engine without crankshaft

Поделиться с друзьями:

Добавить временную метку

  • Супер Двигатель Без Коленвала Super Engine Without Crankshaft

    Как работает двигатель Koenigsegg без распредвала [Видео]

    Camless мотор от Koenigsegg, наглядный пример работы

    Дочерняя компания шведского производителя суперкаров Koenigsegg, FreeValve AB, работает над новым типом системы клапанов для двигателей внутреннего сгорания. Новая система полностью уйдет от классической схемы, подразумевающей наличие распределительных валов, поэтому она и получила название «Camless», «без распредвала». FreeValve опубликовала видео, которое показывает работу нового революционного двигателя во всех деталях.

    Основная часть двигателя, которая собственно и делает его особенным- пневмопривод клапанов двигателя. С помощью пневматических клапанов контролируется работа системы. С помощью Camless двигателей производители смогут наконец-то синхронизировать фазы газораспределения в моторах. Каждая фаза сгорания будет корректироваться в зависимости от условий, двигатели станут легче и будут производить большую мощность, увеличив при этом экономичность. Разработанная шведами система предоставляет возможность контролировать цикл сгорания каждого цилиндра.

    Работа двигателя основывается на пневматическом приводе клапанов, которые открываются и закрываются под давлением пневматики или пружины. Каждый из клапанов можно настраивать по отдельности, что позволяет плавно регулировать высоты подъема клапана и продолжительность его открытия, а также просто деактивировать определенный цилиндр при необходимости. Еще одно преимущество пневматической системы клапанов заключается в том, что она потребляет меньше энергии от двигателя, чем классические распредвалы.

    Все вышеназванные нюансы работы нового типа двигателя делают возможным значительно увеличить выходную мощность (до 30% увеличится мощность и крутящий момент) и также улучшить топливную экономичность (также до 30 процентов). При этом двигатели с революционной системой станут экологичнее, значительно уменьшится объем вредных выбросов.

    Если вся система настолько крутая, почему ее немедленно не введут в эксплуатацию все автопроизводители? Почему они не спешат это делать? Двумя основными слабыми сторонами системы остается надежность и бесшумность работы. Они же и препятствуют продвижению технологии.

    Видео удалено.

    Видео (кликните для воспроизведения).

    Но даже если «безраспредвальная» система приживется, она скорее всего сможет лишь на время продлить жизнь ДВС, то что этот тип двигателей рано или поздно уйдет на пенсию не сомневается никто.

    Источники




    1. Вахламов, В.К. Автомобили ВАЗ / В.К. Вахламов. — М.: Транспорт, 2015. — 193 c.



    2. Автомобили и мотоциклы. Superраскраска для мальчиков. — М.: Астрель, Харвест, Сова, 2015. — 940 c.



    3. Автомобили ВАЗ. Ремонт после аварий. Справочник. — М.: Машиностроение, 1984. — 320 c.
    4. Тапинский, В.Н. Автомобиль «Москвич»: Советы автолюбителям по эксплуатации и обслуживанию / В.Н. Тапинский, Я.В. Горячий, В.К. Богомолов. — М.: Транспорт; Издание 5-е, перераб. и доп., 1986. — 206 c.
    5. Вершигора, В.А. Автомобили «Жигули» моделей ВАЗ-2101, -2102, -21011, -21013: Устройство и ремонт / В.А. Вершигора, А.П. Игнатов, К.В. Новокшонов, и др.. — М.: Транспорт; Издание 2-е, перераб. и доп., 1990. — 240 c.

    Новый виток эволюции двс супер двигатель без коленвала

    Оценка 5 проголосовавших: 1

    Здравствуйте, я Юрий Злобин. Уже более 8 лет работаю автослесарем. Являюсь специалистом своего дела и хочу научить посетителей сайта решать их проблемы.



    Все материалы для данного ресурса тщательно собраны и переработаны для того чтобы донести как можно доступнее всю необходимую информацию. Однако чтобы применить ее, всегда необходима консультация у профессионалов.


    ВНИМАНИЕ !!!
    Если Вы не видите наших видео роликов , значит у Вас включен блокиратор ADBlock




    Интернет-магазин Легион - Автодата